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By David T. ~ o r d , '  A. M. ASCE, Ralph ~ t t r l a n d , ~  M. ASCE, 
and Charles ~ullivan,' M. ASCE 

The Sam Rayburn Reservoir System includes two reservoirs in series: Sam 
Rayburn Reservoir on the Angelina River and B. A. Steinhagen Lake and Town 
Bluff Dam, known as Dam B Reservoir, on the Neches River in eastern Texas. 
These reservoirs are operated by the U.S. Army Corps of Engineers. The system 
components are shown in Fig. 1. 

Operation of Sam Rayburn Reservoir provides flood control, power generation, 
water supply, water quality maintenance, and recreation. Runoff from approxi- 
mately 3,449 sq mi (8,940 km2) drains into the reservoir. The total storage 
volume of the reservoir is 561,000 acre-ft (691,713,000 m3); 289,600 acre-ft 
(357,076,800 m3) of the volume are allocated to conservation purposes, and 
the remainder is allocated to flood control. The installed capacity of the two 
hydropower units at the reservoir is 52,000 kW, and the "dependable" capacity 
currently is estimated to be 49,000 kW. 

Dam B was constructed and is operated primarily for reregulation of releases 
from Rayburn Reservoir. The reservoir is operated also for water supply and 
for recreation. Total storage available is 306,400 acre-ft (377,791,200 m3). 

Additional detailed information on Sam Rayburn Reservoir is presented in 
Ref. 8. Information on B. A. Steinhagen Lake and Town Bluff Dam is available 
in Ref. 6. 

Due to the proximity of the reservoir system to the Gulf of Mexico, maintenance 
of sufficient discharge downstream of Dam B is critical to prevention of saltwater -- - --- - -- .------- 

I Hydr. Engr., United States Army Corps of Engrs., The Hydrologic Engrg. Center, 
609 Second St., Davis, Calif. 95616. 

2 Hydr. Engr., United States Army Corps of Engrs., Ft. Worth District, Ft. Worth, 
Tex. 

3 f-Iydr. Engr., United States Army Corps of Engrs., Southwestern Division, Dallas, 
Tex. 

Note.--Discussion open until March 1, 1982. To extend the closing date one month, 
a writtcn request must be filed with the Manager of Technical and Profession~l Publications, 
ASCE. Manuscript was submitted for review for possible publication on October 9, 1980. 
This paper is part of the Journal of the Water Resources Planning and Management 
Division, Vol. 107, No. WR2, October, 1981. 
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intrusion. This intrusion is detrimental because water is withdrawn from the 
Neches River for irrigation and for municipal and industrial water supply. The 
average maximum monthly discharge rates for recent years are shown in Table 
1. Historically, a saltwater barrier has been installed downstream from Dam 
B during periods of little runoff because releases are reduced during thcsc periods. 
With such a barrier in place, the downstream discharge requirement is reduced 
by approximately 1,000 cfs (28 m3/s) because the need for water to prevent 
saltwater intrusion is eliminated. Subsequent discharge that exceeds the demand 

SAM RAYBURN RESERVOIR \I 

8 A STEINHAGEN LAKE 
AND TOWN BLUFF DAM I DAM I) 

VICINITY MAP 

FIG. 1.-Sam Rayburn Reservoir System Components 

by approximately 2,000 cfs (56 m3/s) causes the bamer to be "washed-out." 
Thus one of the operation problems is to select an operation policy that minimizes 
thc number of times that a saltwater barrier must be installed. 

Selection of operation rules that will yield the optimal hydropower production 
from Rayburn Reservoir is the second operation problem considered. The 
minimum acceptable energy output is defmed,in a contract between the Sam 
Rayburn Dam Electric Cooperative, Inc., and the Federal Government. The 
contract states: 
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. . . the government agrees, to the extent that water is available in the 
McGee Bend Reservoir (now Sam Rayburn Reservoir) above elevation 
149, to make releases . . . as required for the generation of power, with 
such releases at least sufficient to generate power equivalent to 42,000 
kilowatts for a minimum period of 75 hours per month for each of the 
six monthly periods from mid-April through mid-October of each year 
(8). 

Additional useable power often can be generated, and, if so, is purchased by 
a private utility. Thus a dependable power output must be defined, and operating 
rules must be selected to provide the power with high reliability. The operation 
rules also should yield as much additional useable power a s  possible. 

The facilities for recreation at Rayburn Reservoir and at  Dam B pose another 
operation constraint: the reservoirs should be operated in such a way that the 
pool elevation fluctuations are not intolerable to those using the facilities. 

TABLE 1 .-Water Supply Demand Schedule: Sam Rayburn Reservoir Syatem 

In addition to other previously mentioned purposes, Sam Rayburn Reservoir 
and Dam I3 Reservoir are regulated to provide flood control downstream. The 
channel capacity downstream of Dam B is approximately 20,000 cfs (560 m3/s), 
so the reservoirs are operated to maintain flows at or below this capacity if 
possible. 

Month 
(1 ----- 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
Dcccm bcr 

A combined simulation-optimization approach is employed to select an optimal 
operation policy for Sam Rayburn Reservoir System. This methodology is shown 
schematically in Fig. 2. The simulation model is a single reservoir model that 
accounts for water use throughout the system, satisfying all demands when 
possible and allocating the available water according to specific priorities when 

Average maximum monthly demand, 
in cubic feet per second' 

-2 
(2) --. 
250 
300 
700 

1,100 
1,400 
1,700 
1,400 

800 
450 
350 
300 
250 
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NONLINEAR OPTIMIZATION ALGORITHM 

RESERVOIR SIMULATION MODEL D 

WATER 
RESOURCES 

PLANNER 

FIG. 2.-Schematic of Solution Methodology 
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conflicts exist. The simulation model is linked with a nonlinear programming 
a lgo~i thn~ that selects automatically the optimal opcration policy for the reservoir 
system for the given data and with a user-specified objective function. A weighted 
combination of 10 indices of operation efficiency can be used to define this 
objective function. The operation policy that is identified as lhc optinla1 policy 
1 . m ~  V J  + I  n ,,rn!iacar n progr-lmming algoritllrn is smootllcd using engineering judgmcnt 
based on experience with operation of the system, and system response with 
this smoothed policy is simulated. This step is repreated as necessary to obtain 
an acceptable operation policy. The general approach was suggested by Jacoby 
and Loucks (1 1). 

Alternative techniques for selection of an optimal allocation of available storage 
have been proposed and were considered, including applications of linear 
programming (13), network flow programming (14,15) and dynamic programming 
(1,4,16). However, as Yeh et al. (16) point out, ". . . there appears to exist 
no general algorithm." Each application of these mathematical programming 
techniques has required some development and research to select and to program 
the most efficient solution procedure. In this study, time constraints and budget 
limitations precluded such research and development, so a readily available, 
generalized simulation program was combined with readily available computer 
code for the nonlinear programming algorithm (12). This approach provides 
the important capability to simulate in detail the operation of reservoir system 
with a model that can easily be used independent of this optimization algorithm. 

Simulation Model.-The operation of the Sam Rayburn Reservoir System is 
modeled with the Reservoir Yield Program developed in the Hydrologic Engineer- 
ing Ccntcr (IIEC), with modifications to simulatc accurntely the operation of 
this particular system and to model the format of the operation policy traditionally 
used with this reservoir system. The Reservoir Yield Program simulates the 
conservation operation of a reservoir system that includes one reservoir and 
one downstream control point. Constraints on discharge can be specified at 
the reservoir and at the control point. Thc li~odcl is dcsigtlcd for atiulysis of 
operation with a long time interval, such as one month. The methods of 
computation in the Reservoir Yield Program follow closely the procedures 
traditionally employed in hand computations. For each computation period, the 
reservoir release equals the maximum minimum flow requirement for all system 
purposes unless this conflicts with maximum permissible flows. In that case, 
the reservoir release is restricted to the minimum maximum permissible flow. 
Absolute control over the release is exercised by full reservoir and empty reservoir 
limitations. Power is assumed to be generated from reservoir releases up to 
plant capacity, with power head determined by successive approximations to 
account for variation of head with discharge. Flows are translated from the 
reservoir outlet to the downstream control point in a single period without routing. 
Further detailed description of the methods of computation employed in the 
Reservoir Yield Program is presented in Ref. 7. 

Operation of the Rayburn System can be simulated adequately for the purposes 
of the study using the Reservoir Yield Program with a monthly computation 
interval because Dam B has no significant monthly carry-over storage capacity. 
Dam B can be represented as a control point, with average monthly outflow 
considered equal to average monthly inflow, and all water requirements down- 
stream of Dam B can be modeled as requirements at the control point. 
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Modifications to the Yield Program required for simulation of the operation 
of the Rayburn System include the following: (1) Mddifications to employ a 
storage level concept in operation of Rayburn Reservoir; (2) modifications to 
reflect the installation of a downstream saltwater barrier when the volume of 
water in storage in Rayburn falls below a specified value; (3) modifications 
to allow specification of power requirements and downstream discharge require- 
ments as a function of storage in Rayburn; and (4) modifications to alter the 
system operation goals so releases required to satisfy minimum power generation 
requirement at Rayburn will have highest priority as required by contract. 

Use of storage levels for specification of the operation rules for Rayburn 
Reservoir is accepted practice at that reservoir, so modification of the program 
to employ the levels is necessary if practicable operation rules are to be selected. 
Incorporation of storage levels for operation of Rayburn is accomplished by 
defining the conservation storage volume allocated to each of four imaginary 
zones illustrated in Fig. 3. At the beginning of each period of simulation, the 

/ FLOOD-CONTROL STORAGE 

INACTIVE STORAQE 

FIG. 3.-Imaginary Reservoir Storage Zones 

current level is determined by comparing the beginning-of-period storage value 
with these bounds, and the at-site power requirements and downstream discharge 
requirements are set, as shown in Table 2. The Reservoir Yield Program is 
executed as before. 

Additional modifications to the Reservoir Yield Program provide for simulation 
of installation and failure of a saltwater barrier downstream from Dam B. 
Installation of the barrier is assumed to occur when storage in Rayburn Reservoir 
falls to Level 3 or 4 and remains in either level for three months (thus simulating 
a time lag for decision and for installation of the barrier). When the barrier 
is not in place, downstream discharge targets are increased to prevent saltwater 
intrusion, as shown in Tablc 2. When the barrier is installed, the targets are 
fixed at the actual water supply demand untii the barrier is "washcd-out" by 
excessive discharge. This excessive discharge is defined as 2,000 cfs (56 ni3/s) 
or the downstream requirement plus 1,000 cfs (28 m3/s), whichever is larger. 
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To model adequately the priorities of releases in the Rayburn System (priorities 
which are contrary to those incorporated in the Yield Program), the algorithm 
that selects the release for each period is modified to give highest priority 

TABLE 2.-Power and Discharge Requirements: Sam Rayburn Reservoir System 

'Note that the convention of numbering levels for this study does not correspond 
to the convention in other reservoir simulation programs developed in the Hydrology 

Level8 

- (1) 
1 

2 

3 

4 

--- 

Engineering Center (9,lO). 

TABLE 3.-Possible Objective Function Terms for Sam Rayburn Reservoir Operation 
Analysis 

Power requirement at 
Rayburn Reservoir 

---- (2) .--- 
20% plant factor 

75 hr of generation (approx 10% 
plant factor) 

75 hr of generation 15 April-15 
October 

No requirement in other months 
75 hr of generation IS April-15 

October 
No requirements in other months 
-7- - 

Discharge requirement 
below dam 

(3) .---------- ---- 
Water supply dcmand t flow to 

prevent saitwqter inlrusion 
Water supply'dernnnd ,.t- now to pre- 

vent saltwater intrusion 
Water supply demand 

No specific operation requirement; 
shortages declared if discharge fails 
to meet demands of Level 3 -------.--.- 

'Each shortage index is computed by summing the squares of the annual shortage 
ratios and multiplying by (100/number of years of analysis). The annual shortage ratio 

Function 
(1) ----.- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

. .  - .  

is expressed as the ratio of the-annual short& divided by the annual requirement. 
b Energy shortage is equivalent to "power" shortage computed by the Reservoir Yield 

Program. For this study, shortage is defined as follows: Shortage = maximum (O., Level 
1 energy requirement - energy generated). 

Description 

--- (2) - -------- 
Energy shortage ind.:~'.~ 
Downstream discharge shortage index' 
Number of times saltwater barrier is installed in period of analysis 
Number of times saltwater barrier fails (is washed-out) in period of analysis 
Average annual energy shortageb 
Average annual downstream discharge shortage 
Average monthly conservation pool elevation fluctuation 
Average annual energy 
Number of times conservation pool is emptied 
Number of times downstream discharge shortage occurs ------ ----- 

to satisfaction of the minimum power requirement at Rayburn Reservoir, as 
required by contract. With the modification, releases necessary to generate the 
required power, rather than certain minimum flow requirements, are given first 
priority. 
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TABLE 4.-Summary of Selectod Operation Efficiency 

- -  

Maximize average 
annual energy 

Operation 
objective 

(1) 

Minimize energy 
shortage 

Minimize barrier 
installation 

Compromise 

Plant factor, 
as a 

percentage 
(2) 

Maximum 
Average 
Maximum 
Maximum 
Average 
Maximum 
Maximum 
Average 
Maximum 
Average 
Average 

Downstream 
demand 
schedule 

(3) 

'Values shown are for 51-year analysis period. 
Note: 1 cfs = 0.028 m3/s: 1 ft = 0.305 m. 

Discharge 
to prevent 
saltwater 
intrusion, 
cubic feet 

per second 
(4) 

Number 
of times 
saltwater 
barrier is 
installed 

(5) 

Optimizntion Model.-To determine the optimal operation policy for the Sam 
Rayburn System, the reservoir operation problem is formulated as a constrained 
nonlinear programming (NLP) problem. The decision variables in this optimization 
problem are the volumes of conservation storage to be allocated to each of 
the four operation levels. These decision variables are subject to upper and 
lower bounds; the volume allocated to each level must be greater than zero 
and must not exceed the total volume of conservation storage available. Also, 
the sum of the volumes allocated to the four levels must equal the total 
conservation storage available. The storage allocation currently varies seasonally, 
with seasons defined on the basis of significant change in rainfall pattern as 
follows: (1) March-April; (2) May-June; (3) July-September; and (4) October- 
February. 

The optimization problem may be expressed mathematically as 

minimize f(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (1) 

subject to 0 s x,, 5 STMX - STMN . . . . . . . . . . . . . . . . . . . .  (2) 

in which X = a vector of all decision variables x u ;  i = the index of storage 
levels; j = the index of seasons; STMX is the total storage volume at the 
top of the conservation pool; STMN is the total storage volume at the bottom 
of the conservation pool. If desired, this formulation can be modified to allow 
monthly variation of the storage allocation. The objective function, f ( X ) ,  is 



RESERVOIR OPERATION ANALYSIS 

Indices: Sam Rayburn Reservoir System' 

AvBrage 
annuol 
energy 

shortago, 
thousand 
kilowatts- 

hours 
( 6 )  -.-.------.--- 

34,264 
33,120 
47,634 
15,735 
13,007 
27,624 
25,670 
25,856 
26.656 
24,857 
23,356 

Average 
monthly 

conservation 
pool 

elevation 
fluctuation, 

in feet 
(7) --.---- 
.69 
.56 
.69 

1.03 
-93 

1.10 
1 .O1 
.73 
.93 
.75 
.8 1 

Average 
annual 
energy, 

thousand 
kilowatt- 

hours 

Number 
of times 

conservation 
pool is 

emptied 
(9) 

Number 
of months 
in which 

downstream 
discharge 
shortage 

occurs 
(10) 

evaluated by executing the modified Reservoir Yield Program with specified 
values of the decision variables. 

The Box-Complex algorithm (3) is employed to solve the constrained nonlinear 
programming problem. This algorithm is a multivariate, constrained, random- 
search technique that seeks the minimum (or maximum) of a general nonlinear 
function subject to explicit upper and lower bounds on the decision variables 
(Eq. 2) and to nonlinear constraints on the decision variables (Eq. 3). With 
the Box-Complex algorithm, a set of feasible solutions to the optimization problem 
is generated at random, the objective function is evaluated for each, the "worst" 
solution is discarded, a new solution is determined with a projection technique, 
and the process is repeated until convergence criteria are satisfied. 

Multiple Objective Analysis.-The efficiency of operation of the Sam Rayburn 
Reservoir System cannot be measured solely in economic terms, in terms of 
power generation, or in terms of failure to satisfy discharge requirements. These 
and other indices of operation efficiency, must be considered when selecting 
the optimal operating policy, and the trade-offs must be considered when selecting 
the optimal policy. For example, if the storage is allocated to maximize the 
average annual energy generated, the number of times that the saltwater barrier 
must be installed may be unacceptable. On the other hand, if storage is allocated 
to minimize the number of times the barrier must be installed, the energy generated 
decreases and may fall below an acceptable level. Neither solution is likely 
to be acceptable in terms of overall system operation goals, so  some compromise 
solution must be selected. 

A weighting method of multiobjective programming is employed to quantify 
the relative importance of various operation objectives (5). With this technique, 
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the mathematical objective function for the NLP problem is defined as 

. . ia which t k ( X j  = the value of ifidex k ~f ~peiati~n efficiency with decls:~n 
variables X; p = the total number of indices; wk = the weight assigned to 
index k. The optimization problem then is to minimize f ( X ) ,  the weighted sum 
of the efficiency indices. Ten indices of system operation efficiency are included 
in the objective function available for selection of the best operation rules for 
Rayburn Reservoir. These are listed in Table 3. In application only, functions 
3, 5, 8, 9, and 10 are utilizcd for selection of the best-compromise operation 
study, with weights defined on the basis of analysis of optimal system operation 
for the objectives individually. The approach is conceptually similar to the Step 
Method suggested by Benayoun, et al. (2). 

Selected Operation Rules.-Using the analytical tools described herein and 
data provided by the Fort Worth District and by the Southwestern Division 

'r FLOOD-CONTROL STORME 

* I - I L o S ,  

1.. bC..-**lT 

I D  ZONE 3 

INACTIVL STORAGE I 

FIG. 4.-Seasonal Reservoir Storage Allocation 

of the Corps of Engineers, best-compromise operation rules for the Sam Rayburn 
Reservoir System were determined for several alternative objective functions 
with different combinations of downstream demands, power requirements, and 
discharge necessary to prevent saltwater intmiion. System operation indices 
for several of these alternative policies nre summarized in Table 4. Prior to 
selection of a policy for actual operation of the reservoir, these alternative 
storage allocation policies were reviewed by personnel of the Ft. Worth District 
and Southwestern Division, Corps at Engineers, by personnel of the Lower 
Neches Valley Authority (a Texas river authority), and by personnel of the 
Department of Energy (Southwestern Power Administration). As a consequence 
of this review, several smoothed, compromise solutions were identified, and 
the system operation was simulated with the Reservoir Yield Program to evaluate 
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the effectiveness of each. These results are also shown in Table 4. Fig. 4 illustrates 
the storage allocation of one of these operation policies. 

From the perspective of the water resources planner, the most important 
conclusion that may be drawn from this study is that certain analytical techniques 
presented in the literature are applicable to practical resource management 
problems. The Sam Rayburn Reservoir operation problem is solved as a nonlincar 
programming problem, using an accepted simulation model to evaluate the 
objective function for each set of operation rules. The nonlinear programming 
algorithm employed is a simple, readily available techniqu.e. A multiobjective 
programming technique is used to develop an objective function that, in some 
sense, quantifies the importance of various system purposes. 

From the perspective of the water resources system analyst, two important 
conclusions may be drawn from this study. The first is that planners and engineers 
involved in planning and managing water resources projects will accept application 
of systems analysis techniques to problems they face if such applications can 
be demonstrated to: (1) Provide additional information for use in decision making; 
(2) reduce the time, money, or computer memory requirements for plan formula- 
tion or evaluation; or (3) increase the project benefits by identifying solutions 
that satisfy the practical constraints on operation and are sufficiently resilient 
to respond to changing conditions. Integrated use of a nonlinear programming 
formulation with the Reservoir Yield Program for simulation of systcm operation, 
followed by an interactive snlooll~ing process tllul nllows input fro111 tlrc wntcr 
managers satisfies these requirements. 

In the process of developing operation rules for Sam Rayburn Reservoir, 
Corps personnel who are involved daily with the operation were consulted in 
definition of the problem, in identification of the critical characteristics of the 
system that should be modeled, and in evaluation of the solutions developed 
by npplication of the optimization-simulation methodology. Thc rcsulls of thc 
initial simulations of system operations were rcvicwed carefully by Corps District 
and Division personnel to assure that the modified reservoir simulation program 
adequately modeled the system operation. This leads logically to the second 
conclusion: the resource managers/system operators must be included in the 
policy formulation-evaluation "DO-Loop" at many points. 
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The following symbols are used in this paper: 

f =  
P = 

STMN = 
STMX = 

total objective function; 
total number of objective functions; 
total storage volume at bottom of conservation pool; 
total storage volume at top of conservation pool; 
weight assigned to objective functions; 
decision variable; 
vector of all decision variables; and 
objective function. 

Subscripts 
i = index of reservoir conservation storage levels; 
j = index of seasons; and 
k = index of objective functions. 
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